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Abstract A fullerene graph is a planar cubic 3-connected graph with only pentag-
onal and hexagonal faces. We show that fullerene graphs have exponentially many
perfect matchings.
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1 Introduction

Since the discovery of the first fullerene molecule [12] in 1985, the fullerenes have
been objects of interest to scientists all over the world. The name fullerenes was given
to cubic carbon molecules in which the atoms are arranged on a sphere in pentagons
and hexagons.

Many properties of fullerene molecules can be studied using mathematical tools
and results. Thus, fullerene graphs were defined as cubic (i.e. 3-regular) planar 3-con-
nected graphs with pentagonal and hexagonal faces. Such graphs are suitable models

F. Kardoš (B) · J. Miškuf
Institute of Mathematics, Faculty of Science, University of Pavol Jozef Šafárik,
Jesenná 5, 041 54 Košice, Slovakia
e-mail: frantisek.kardos@upjs.sk

J. Miškuf
e-mail: jozef.miskuf@upjs.sk

D. Král’
Institute for Theoretical Computer Science (iti), Faculty of Mathematics and Physics,
Charles University, Malostranské Náměstí 25, 118 00 Prague, Czech Republic
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for fullerene molecules: carbon atoms are represented by vertices of the graph, whereas
the edges represent bonds between adjacent atoms.

Since all carbon atoms are 4-valent, for every atom precisely one of the three bonds
should be doubled. Such a set of double bonds is called a Kekulé structure in a fuller-
ene. It corresponds to the notion of perfect matchings in fullerene graphs: a matching
in a graph G is a set of edges of G such that no two edges in M share an end-vertex.
A matching M is perfect if any vertex of G is incident with an edge of M . Let M be a
perfect matching in a fullerene graph G. A hexagonal face is resonant if it is incident
with three edges in M . The maximum size of a set of resonant hexagons in G is called
the Clar number of G.

From the Four Color Theorem [1,2,14] one can easily derive the existence of a
proper edge coloring of a fullerene graph G using three colors—it means that the set
of edges of G can be decomposed into three pairwise disjoint perfect matchings (see
[11]).

All known general lower bounds for the number of perfect matchings in fullerene
graphs are linear in the number of vertices [4,5,16]. The best known result asserts

that a fullerene graph with p vertices has at least
⌈

3(p+2)
4

⌉
different perfect matchings

[16]. On the other hand, the computation of the number of perfect matchings in typical
fullerene graphs with a small number of vertices [7] indicates that this number should
grow exponentially with p.

So far, several special classes of fullerene graphs with exponentially many perfect
matchings are known but a general result is missing. Such classes of fullerene graphs
either have the special structure of nanotubes [13], have high symmetry [7] or are
obtained using specific operations [8]. In this paper, we establish an exponential lower
bound on the number of perfect matchings for all fullerene graphs.

Let us note that Chudnovsky and Seymour [3] have recently proved that every cubic
bridgeless planar graph has an exponential number of perfect matchings. In particular,
they have proved that every such graph has at least 2

p
655978752 perfect matchings. This

bound is worse than our bound 2
p−380

61 but it applies to a larger class of graphs.

2 Main result

A cyclic edge-cut in a graph G is an edge-cut E such that at least two of the con-
nected components of G\E contain a cycle. A cyclic edge-cut is trivial, if one of the
components is a cycle. No fullerene graph has a cyclic edge-cut of size less than five
[6,10]. The fullerene graphs with non-trivial cyclic 5-edge-cuts have a special struc-
ture [10,13] and the number of perfect matchings in them is known to be exponential
[13]. Hence, we focus on fullerene graphs with no non-trivial cyclic 5-edge-cuts.

Theorem 2.1 Let G be a fullerene graph with p vertices that has no non-trivial cyclic

5-edge-cut. The number of perfect matchings of G is at least 2
p−380

61 .

Proof For fullerene graphs with a small number of vertices, the earlier linear bounds
[16] provide the desired conclusion. Hence, we consider only fullerene graphs with
p > 380 vertices.
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We find a perfect matching M in G such that there are at least p−380
61 disjoint reso-

nant hexagonal faces. Since in each such resonant hexagon we can switch the matching
to the other edges of the hexagon independently of the other resonant hexagons, the
bound will follow immediately.

The dual graph G∗ of the graph G is a plane triangulation with 12 vertices of degree
5 and all other vertices of degree 6. Let U = {u1, . . . , u12} be the set of vertices of
degree 5. Our aim is to construct a set W of vertices of G∗ of degree 6 and such that:

• the distance between v and v′ in G∗ is at least 5 for all v, v′ ∈ W , v �= v′;
• the distance between v and u in G∗ is at least 3 for all v ∈ W and u ∈ U .

We present a greedy algorithm to construct such a set W . Initially, we set W0 = ∅,
and we color all the vertices at distance at most 2 from any ui by the white color. The
remaining vertices are colored black. White vertices cannot be chosen as vertices of
W . For each ui ∈ U there are at most 5 vertices at distance one and at most 10 vertices
at distance two. Hence, there are at most 12 · (1 + 5 + 10) = 192 white vertices
initially.

Granted there are some black vertices, we choose a black vertex vk and add it to
the constructed set, i.e. Wk := Wk−1 ∪{vk}. We recolor all vertices at distance at most
4 from vk (including vk) white. Since for any vertex v of degree 6 there are at most
6d vertices at distance d, there are at most 1 + 6 + 12 + 18 + 24 = 61 new white
vertices. This procedure terminates when there are no black vertices.

Let W be the resulting set Wk . The set W contains at least f −192
61 vertices where f

is the number of faces of G. By Euler’s formula, f = p
2 + 2 and thus |W | ≥ p−380

122 .
We next describe how to construct a matching in G with a lot of disjoint resonant

hexagons. Given a vertex v ∈ W , let R(v) be the set of vertices at distance at most 2
from v (see Fig. 1). The vertices at distance 2 from v form a cycle of length 12 in G∗.
This cycle is an induced cycle of G∗ since G∗ has no non-trivial cyclic 5-edge-cut.
Let R∗(v) be the set formed by the 6 independent vertices of R(v) drawn with full
circles in Fig. 1. Since G has no non-trivial cyclic 5-edge-cut, all the vertices in R∗(v)

are different and form an independent set in G∗.
The sets R∗(v) for v ∈ W are pairwise disjoint since W only contains vertices at

distance at least 5. We now modify the graph G∗ to planar graphs H0 and H . For every
vertex v ∈ W , delete v and the six neighbors of v. Let H0 be the resulting graph.

Fig. 1 The configuration R(v)

and the six vertices in R∗(v)
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Fig. 2 The structure of the graphs H0 and H

Further identify the six vertices of R∗(v) (see Fig. 2). The final plane graph is denoted
by H .

The Four Color Theorem [1,2,14] asserts the existence of a proper vertex coloring
of H using four colors. The coloring of H yields a precoloring of H0 such that the six
vertices of each set R∗(v) have the same color. Let c(v) be this color.

We extend the precoloring of H0 to a proper coloring of G∗. We first color each
vertex v by the color c(v). For each v ∈ W , there are only six uncolored vertices
inducing a 6-cycle (the vertices adjacent to v), and each such vertex has three neigh-
bors colored with c(v) and one vertex colored with a different color. Therefore, for
each such uncolored vertex, there are 2 available colors. Since every cycle of length
six is 2-choosable [9,15], there is an extension of the coloring of H0 to G∗.

The 4-coloring of G∗ corresponds to a proper 3-edge coloring of G. To see this,
assume that the vertices of the graph G∗ are colored with colors 1, 2, 3, and 4. There
are edges of 6 different color types: 12, 13, 14, 23, 24, and 34. Color the edges of G
corresponding to the edges of G∗ of types 12 and 34 (which are pairwise disjoint) by
the color a, the edges of G corresponding to the edges of G∗ of types 13 and 24 by the
color b, and the remaining edges, i.e. the edges corresponding to the edges of G∗ of
types 14 and 23, by the color c. Since the graph G is cubic, each of the color classes
a, b, and c forms a perfect matching of G.

Let f be a face corresponding to a vertex w adjacent to v ∈ W in G∗. Since w has
three (non-adjacent) neighbors in G∗ colored with the color c(v), the corresponding
three non-adjacent edges incident with f are colored with the same color. Hence, the
face f is resonant in one of the three matchings formed by the edges of the color a,
the edges of the color b, and the edges of the color c.

There are 6 such resonant hexagons for the three matchings for each v ∈ W . Alto-
gether, there are 6|W | resonant hexagons. Therefore, one of the matchings has at least
2|W | ≥ p−380

61 resonant hexagons. Observe that the resonant hexagons in one color
class are always disjoint: if they were not disjoint, they would correspond to two
adjacent neighbors w and w′ of some vertex v ∈ W . But the colors assigned to w and
w′ are different, in particular, the edges corresponding to vw and vw′ have different
colors. Hence, the hexagons corresponding to w and w′ are resonant for different
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colors a, b, or c. The desired bound on the number of perfect matchings readily fol-
lows. �	

Theorem 2.1 combined with the bound 15 · 2
p

20 by Kutnar and Marušič [13] on the
number of perfect matchings in fullerene graphs with non-trivial cyclic 5-edge cuts
yields the following.

Corollary 2.2 Every fullerene graph with p vertices has at least 2
p−380

61 perfect match-
ings.
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6. T. Došlić, Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages. J. Math. Chem 33, 103–112

(2003)
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